10. Bibliografía


10.     Bibliografía

1.
Larue, L. y Bellacosa, A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/Akt pathways. Oncogene 2005; 24: 7443-7454.
2.
Gschwendt M. Protein kinase Cd. Eur. J. Biochem. 1999; 259: 555-564.
3.
Fang JY y Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005; 6: 322-327.
4.
Castedo, M., Ferri, KF y Kroemer G. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ. 2002; 9: 99-100
5.
Vivanco I. y Sawyers CL. The phosphatidylinositol 3-kinase Akt pathway in human cancer. Nature Rev. Cancer 2002; 2: 489-501.
6.
Paez J y Sellers WR. PI3K/PTEN/Akt pathway. A critical mediator of oncogenic signaling. Cancer Treat Res 2003; 115: 145-167.
7.
Borlado LR, Redondo C, Alvarez B et al. Increased phosphoinositide 3-kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. FASEB J 2000; 14: 895-903.
8.
Song, G. Ouyang, S. Bao. The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 2005; 9: 59-61.
9.
Ghosh S y Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002; 109 (Suppl): S81-96.
10.
Kane LP, Shapiro VS, Stokoe D, Weiss A. Induction of NF-kappaB by the Akt/PKB kinase. 1999;9(11): 601-604.
11.
Arlt A, Schafer H. NFkappaB-dependent chemoresistance in solid tumors. Int J Clin Pharmacol Ther. 2002; 40(8): 336-347.
12.
Wang JM, Chao JR, Chen W, et al. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 1999; 19: 6195-6206.
13.
Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 2001; 3: 973-982.
14.
Brunet A., Bonni A, Zigmond MJ et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999; 96 (6): 857-868
15.
Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 2003; 5: 578-581.
16.
Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor o form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002; 110: 163-175.
17.
Thomas G. y Hall MN. TOR signaling and control of control of cell growth. Curr. Opin. Cell Biol. 1997; 9: 782- 787.
18.
Schmelzle T, y Hall MN. TOR, a central controller of cell growth. Cell. 2000; 103: 253-262.
19.
Guertin DA y Sabatini DM. An expanding role for mTOR in cancer. Trends Mol. Med. 2005; 11: 53-361.
20.
Martin DE y Hall MN. The expanding TOR signaling network. Curr. Opin. Cell Biol. 2005; 17: 158-166.
21.
Richter, JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 2005; 433: 477-480.
22.
Hannan KM, Brandenburger Y, Jenkins A, et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 2003; 23: 8862-8877.
23.
Peng T, Golub TR, Sabatini DM. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 2002; 22: 5575-5584.
24.
Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 2004; 36: 2445-2462.
25.
Tapon N, Ito N, Dickson BJ, Treisman JE, Hariharan IK. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 2001; 105: 345-355.
26.
Gao X, Zhang Y, Arrazola P, et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol 2002; 4: 699-704.
27.
Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. Curr Biol 2005; 15: 702-713.
28.
Birkenkamp KU, Coffer PJ: Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 2003; 31: 292-297.
29.
Ogawara Y, Kishishita S, Obata T, et al. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 2002: 277: 21843-21850.
30.
Lee S, Comer FI, Sasaki A, et al. TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol Biol Cell 2005; 16: 4572-83.
31.
Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14: 1296-1302
32.
Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6: 1122-1128.
33.
Sun SY, Rosenberg LM, Wang X, et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mTOR Cancer Res 2005; 65: 7052-8.
34.
Chan S. Targeting the mammalian target of rapamycin (mTOR): A new approach to treating cancer. Br J Cancer 2004; 91: 1420-1424.
35.
Castedo M, Roumier T, Blanco J et al. Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO J 2002; 21: 4070-4080.
36.
Pene F, Claessens YE, Muller O et al. Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene 2002; 21: 6587-6597.
37.
Edinger AL y Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 2002; 13: 2276-2288.
38.
Xu G, Kwon G, Cruz WS et al. Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes 2001; 50: 353-360.
39.
Kanamori Y, Kigawa J, Itamochi H, et al. Correlation between loss of PTEN expression and Akt phosphorylation in endometrial carcinoma. Clin. Cancer Res. 2001; 7: 892-895.
40.
Choe G, Horvath S, Cloughesy TF, et al. Analysis of the phosphatidylinositol 3-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 2003; 63: 2742-2746.
41.
Frisk T, Foukakis T, Dwight T, et al. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer. 2002; 35: 74-80.
42.
Tsutsui S, Inoue H, Yasuda K, et al. Reduced Expression of PTEN Protein and Its Prognostic Implications in Invasive Ductal Carcinoma of the Breast. Oncology 2005; 68: 398-404.
43.
Saal LH, Holm K, Maurer M, et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005; 65: 2554-2559.
44.
Koksal IT, Dirice E, Yasar D, et al. The assessment of PTEN tumor suppressor gene in combination with Gleason scoring and serum PSA to evaluate progression of prostate carcinoma. Urol. Oncol. 2004; 22: 307-312.
45.
Edwards J, Krishna N S, Witton, CJ y Bartlett, JM. Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin. Cancer Res. 2003; 9: 5271-5281.
46.
Velho S, Oliveira C, Ferreira A, et al. The prevalence of PIK3CA mutations in gastric and colon cancer. Eur. J. Cancer . 2005; 41: 1649-1654.
47.
Agbunag C, y Bar-Sagi D. Oncogenic K-ras drives cell cycle progression and phenotypic conversion of primary pancreatic duct epithelial cells. Cancer Res. 2004; 64: 5659-5663.
48.
Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol. 2005; 17:596-603. 49 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70.
50.
Baker H, Sidorowicz A, Sehgal SN et al. Rapamycin (AY-22,989), a new antifungal antibiotic. III. In vitro and in vivo evaluation. J Antibiot (Tokyo) 1978; 31: 539-545.
51.
Davies CB, Madden RL, Alexander JW et al. Effect of a short course of rapamycin, cyclosporin A, and donor-specific transfusion on rat cardiac allograft survival. Transplantation 1993; 55: 1107-1112.
52.
Trepanier DJ, Gallant H, Legatt DF et al. Rapamycin: distribution, pharmacokinetics and therapeutic range investigations: an update. Clin Biochem 1998; 31: 345-351.
53.
Qi S, Xu D, Peng J et al. Effect of tacrolimus (FK506) and sirolimus (rapamycin) mono- and combination therapy in prolongation of renal allograft survival in the monkey. Transplantation 2000; 69: 1275-1283.
54.
Ikonen TS, Gummert JF, Hayase M et al. Sirolimus (rapamycin) halts and reverses progression of allograft vascular disease in nonhuman primates. Transplantation 2000; 70: 969-975.
55.
DiJoseph JF, Mihatsch MJ, Sehgal SN. Renal effects of rapamycin in the spontaneously hypertensive rat. Transpl Int 1994; 7: 83-88.
56.
Andoh TF, Burdmann EA, Fransechini N et al. Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK506. Kidney Int 1996; 50: 1110-1117.
57.
Sousa JE, Sousa AG, Costa MA et al. Use of rapamycin-impregnated stents in coronary arteries. Transplant Proc 2003; 35: 165S-170S.
58.
Mohacsi PJ, Tuller D, Hulliger B et al. Different inhibitory effects of immunosuppressive drugs on human and rat aortic smooth muscle and endothelial cell proliferation stimulated by platelet-derived growth factor or endothelial cell growth factor. J Heart Lung Transplant. 1997; 16: 484-492.
59.
Yatscoff RW. Pharmacokinetics of rapamycin. Transplant Proc 1996; 28: 970-973.
60.
Mignat C. Clinically significant drug interactions with new immunosuppressive agents. Drug Saf 1997; 16: 267-278.
61.
Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet 2001; 40: 573-585.
62.
Brattstrom C, Tyden G, Sawe J et al. A randomized, double-blind, placebo-controlled study to determine safety, tolerance, and preliminary pharmacokinetics of ascending single doses of orally administered sirolimus (rapamycin) in stable renal transplant recipients. Transplant Proc 1996; 28: 985-986.
63.
Kahan BD, Camardo JS. Rapamycin: clinical results and future opportunities. Transplantation 2001; 72: 1181-1193.
64.
Reitamo S, Spuls P, Sassolas B et al. Efficacy of sirolimus (rapamycin) administered concomitantly with a subtherapeutic dose of cyclosporin in the treatment of severe psoriasis: a randomized controlled trial. Br J Dermatol 2001; 145: 438-445.
65.
Busca R, Bertolotto C, Ortonne JP et al. Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J Biol Chem 1996; 271: 31824-31830.
66.
Eng CP, Sehgal SN, Vezina C. Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (Tokyo) 1984; 37: 1231-1237.
67.
Grewe M, Gansauge F, Schmid RM et al. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res 1999; 59: 3581-3587.
68.
Hosoi H, Dilling MB, Shikata T et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res 1999; 59: 886-894.
69.
Shi Y, Frankel A, Radvanyi LG et al. Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res 1995; 55: 1982-1988.
70.
Calastretti A, Bevilacqua A, Ceriani C et al. Damaged microtubules can inactivate BCL-2 by means of the mTOR kinase. Oncogene 2001; 20: 6172-6180.
71.
Humar R, Kiefer FN, Berns H et al. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)- dependent signaling. FASEB J 2002; 16: 771-780.
72.
Guba M, von Breitenbuch P, Steinbauer M et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002; 8: 128-135.
73.
Geoerger B, Kerr K, Tang CB et al. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/ medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 2001; 61: 1527-1532.
74.
Gibbons JJ, Discafani C, Peterson R. The effect of CCI-779, a novel macrolide anti-tumor agent, on the growth of human tumor cells in vitro and in nude mouse xenograft in vivo. Proc Am Assoc Cancer Res 2000; 40: 301.
75.
Yu K, Toral-Barza L, Discafani C et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001; 8: 249-258.
76.
Elit L. CCI-779 Wyeth. Curr Opin Investig Drugs 2002; 3: 1249-1253.
77.
Raymond E, Alexandre J, Faivre S et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 2004; 22: 2336-2347.
78.
Peralba JM, DeGraffenried L, Friedrichs W et al. Pharmacodynamic Evaluation of CCI-779, an Inhibitor of mTOR, in Cancer Patients. Clin Cancer Res 2003; 9: 2887-2892.
79.
Atkins MB, Hidalgo M, Stadler WM et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 2004; 22: 909-918.
80.
Chan S, Johnston S, Scheulen M et al. First report of the safety and activity of CCI-779 for patients with locally advanced or metastatic breast cancer failing prior chemotherapy. Proc Am Soc Clin Onco 2002; 44: Abstr 175.
81.
Schuler W, Sedrani R, Cottens S et al. SDZRAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 1997; 64: 36-42.
82.
Schuurman HJ, Cottens S, Fuchs S et al. SDZRAD, a new rapamycin derivative: synergism with cyclosporine. Transplantation 1997; 64: 32-35.
83.
O'Reilly T, Vaxelaire J, Muller M et al. In vivo activity of RAD 001, an orally active rapamycin derivative, in experimental tumor models. Proc Am Assoc Cancer Res 2002; 43: Abstr 359.
84.
Majewski M, Korecka M, Joergensen J et al. Immunosuppressive TOR kinase inhibitor everolimus (RAD) suppresses growth of cells derived from posttransplant lymphoproliferative disorder at allograftprotecting doses. Transplantation 2003; 75: 1710-1717.
85.
Majewski M, Korecka M, Kossev P et al. The immunosuppressive macrolide RAD inhibits growth of human Epstein-Barr virus-transformed B lymphocytes in vitro and in vivo: A potential approach to prevention and treatment of posttransplant lymphoproliferative disorders. Proc Natl Acad Sci USA 2000; 97: 4285-4290.